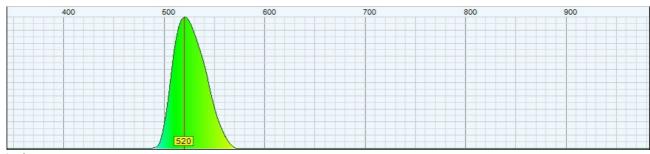
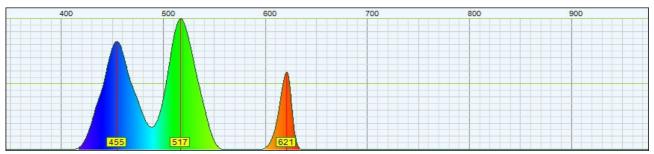


特冒米谐系统

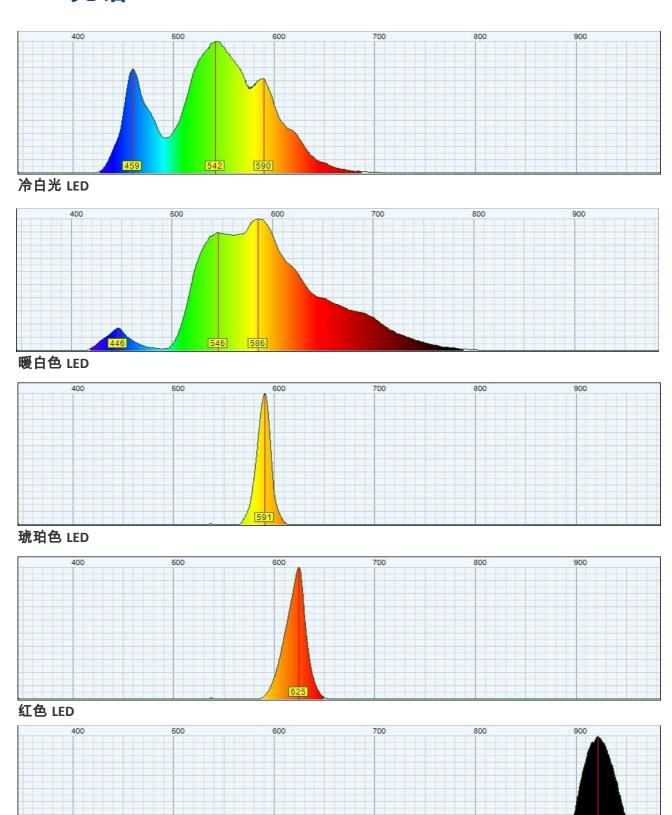
Theremino 光谱仪 样本光谱

LED 光谱

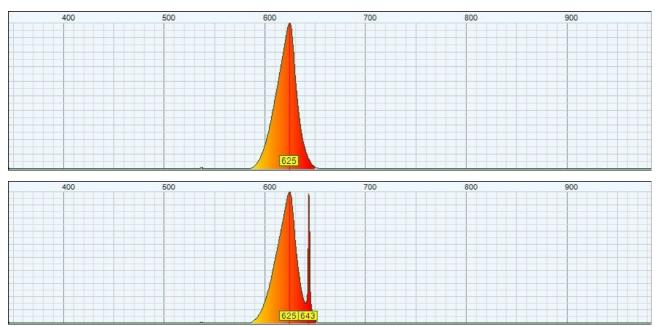

紫外线 LED - 395 nm


紫外线 LED - 407 nm (对橄榄油的叶绿素荧光效果最佳)

蓝色 LED



绿色 LED


RGB LED (来自 LED 灯带 SMD 5050 三芯片)

LED 光谱

红外线 LED

LED 与激光的比较

红色 LED + 红色激光。请注意,激光线和红色 LED 线的分辨率不受激光的影响,仅有几纳米的距离。

最常见激光的波长

◆ 紫色激光

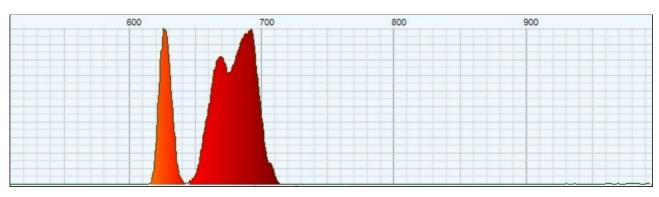
405 nm (与"蓝光"光盘和 LED UV 波长相同)

◆ 蓝色激光 473 纳米

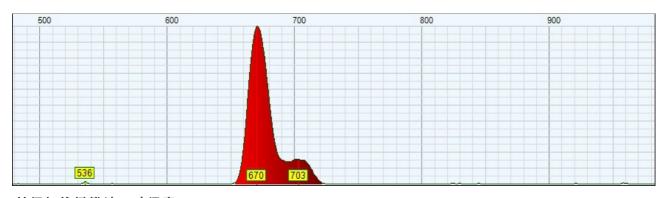
◆ 绿色激光 532 纳米

▶ 氦氖激光器 633 纳米

◆ 红色激光 635 nm(最明显)以及高达 640、650 和 670 nm(最便宜)

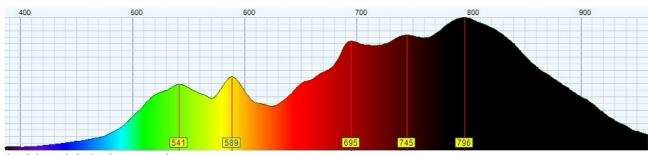

◆ 红外线激光 808 nm(或 1064 nm,带有 808 nm 的痕迹)

某些材料的荧光

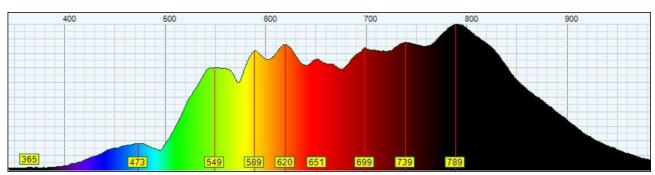

下面图片中的荧光是用 407 nm 紫外线 LED 激发的。

铀玻璃

蛋壳(卟啉)



特级初榨橄榄油(叶绿素)

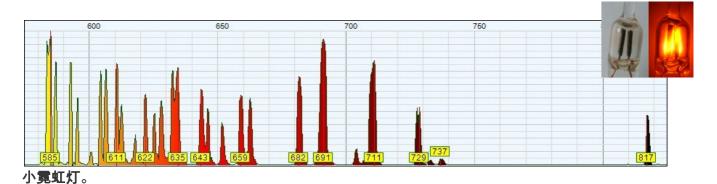

叶绿素荧光在文件"Theremino_OilMeter_TestMethods"中有详细说明,该文件是"Theremino Oil Meter"文档的一部分。

Theremino 油度计"是一款橄榄油测试仪,基于对油荧光和透射光的测量,波段为 450 至 500 nm 和 650 至 700 nm。为了开发油度计,我们必须选择最好的彩色滤光片、LED 和光电晶体管。在这项研究中,"Theremino 光谱仪"是必不可少的,它使我们能够制作出更可靠的橄榄油测试仪。

白炽灯

小型半瓦白炽灯泡(5V时 100 mA)

经典 100 瓦白炽灯



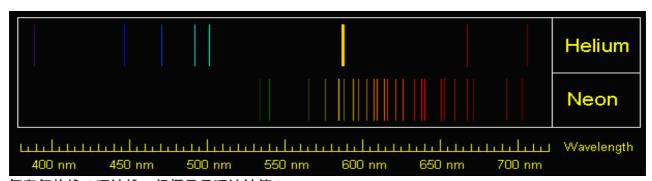
卤素灯泡 50 瓦

灯丝灯泡发射的能量涵盖可见光和红外光谱。与"浪费"在不可见红外光范围内的光相比,灯丝温度越高,可见光的产生量就越大。

卤素灯泡的灯丝温度较高,因此发射的红外线较少。

霓虹灯

产生的行数令人难以置信。即使在弱光条件下,光谱仪也能解析出三十条线。


这是一个简单的霓虹灯,但也是一个等离子室,可以展示电子和原子的运作。灯泡内的电离等离子体只发射非常特定的波长,这些谱线之间几乎没有或根本没有发射。多年来,这些光谱线的产生机制一直是个谜。后来,在 1913 年,尼尔斯·玻尔用原子模型解释了这一点,其中电子围绕原子核旋转。在他的模型中,每种不同的元素都存在一定数量的电子,这些电子具有非常特定的能级。

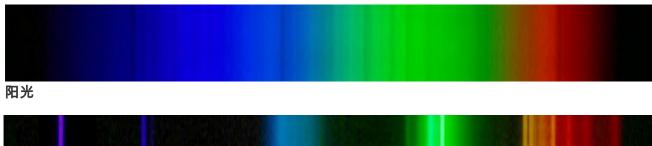
当元素受热或受电激发时,电子会跃迁到更高能级的轨道,然后落到初始能级,发射光子,以释放能量差。光子的波长或颜色就是两个能级之间的确切差异。由于可见的线很窄,中间没有能量值,因此只有特定量的能量原子轨道。

从这些考虑以及从这个简单的灯泡出发,诞生了电子轨道、"量子"、我们今天所知的原子以及整个量子力学。

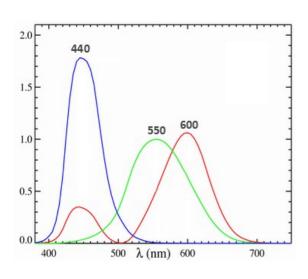
产生线条的其他物质

不仅氖,元素周期表中的几乎所有元素都会产生特征线。最知名的(用于灯中的)元素是氦、氖、氩、氖、氙、汞和钠。

氦和氖的线(理论线,根据量子理论计算)


荧光灯

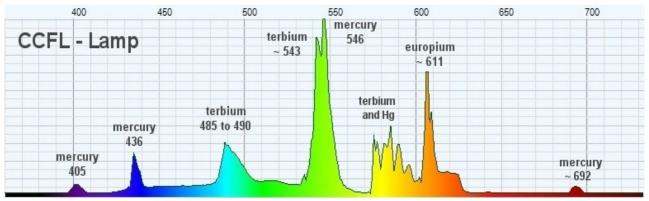
荧光灯有多种类型: 荧光灯管、节能灯(CFL-紧凑型荧光灯)和冷阴极灯(CCFL-冷阴极荧光灯)


所有这些灯的发射光谱都相似。它们含有汞、氖、氩和氪,可产生一些紫外线和蓝、绿、红光。荧 光颜料的白色涂层使这些线条稍微变宽,并产生人眼看来呈白色的光。

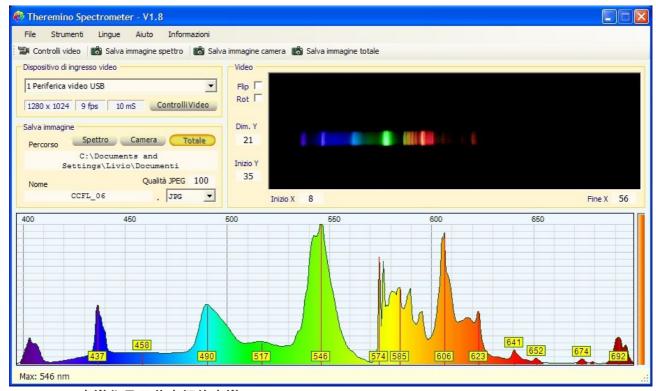
荧光灯与太阳光不同,它并不发射所有波长的光,而是将能量集中在某些区域,称为"特征发射线"。

荧光灯光

荧光灯看起来是白色的,因为<mark>人眼只能看到三种颜色:蓝色、绿色和红色,</mark>被称为"原色"。

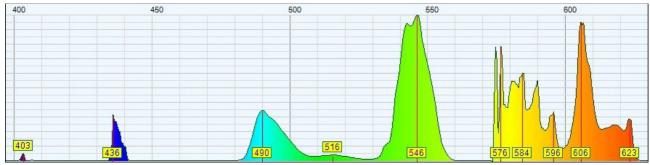

人眼响应曲线

眼睛可以分别接收和测量三种基本颜色。如果灯在这 三个区域以正确的比例发射能量,则灯是白色的。

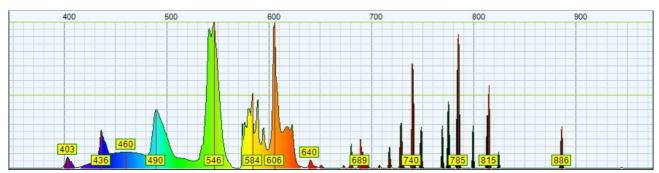

中间色实际上不可见,而是由神经系统从这三种颜色 开始计算的。这意味着对于人眼来说,中间色(例如 黄色)与绿色和红色的正确混合是无法区分的。另一 方面,光谱仪看不到黄色,但可以看到绿色和红色这 两个分离的峰值。

荧光灯特性线

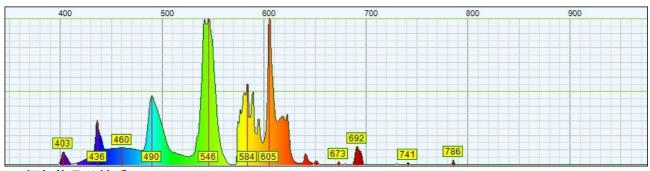
光谱包含两个荧光灯<mark>可用于校准光谱仪的线</mark>. 两个特征波长是由汞 436 纳米以及 546 纳米。


436 和 546 nm 处的线是准确的。其他行的位置不稳定,可能会因灯的不同而变化。

Theremino 光谱仪显示荧光灯的光谱


其他荧光灯光谱

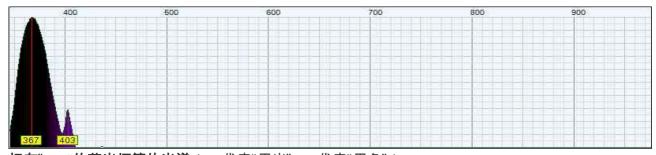
此图显示了光谱仪的分辨率。两条黄线 574 和 576 完全分开。通常经济型和"DIY"型光谱仪没有这种分辨率。



CFL 灯具有较大的可见光面积。

在下面两张图片中,你可以看到刚打开的荧光灯发出很多红外线,波长超过 700 nm。加热后,可见 光区域的能量增加,红外线的线条减少。

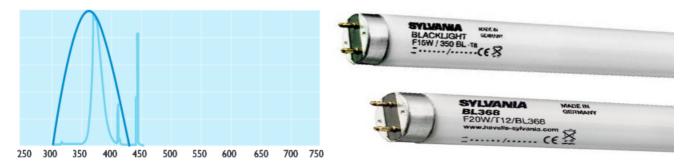
CFL 灯刚打开


CFL 灯加热几分钟后

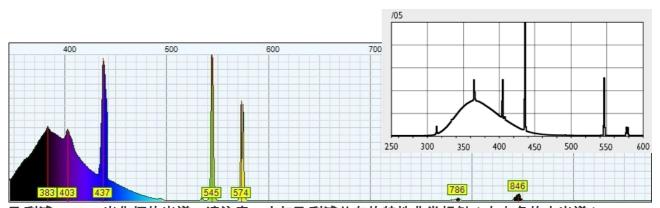
黑光灯("伍德"灯)

这些灯含有过滤器,可以消除几乎所有的可见光,从而最大限度地发挥荧光的效果。

标有"BLB"的荧光灯管的光谱(BL代表"黑光",B代表"黑色")

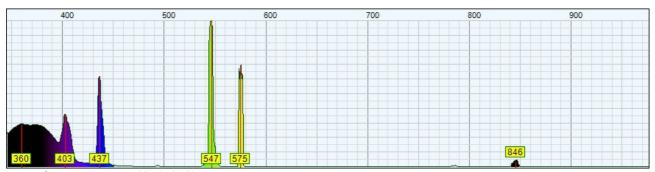

光谱显示几乎所有的能量都集中在 400nm 处。人眼只能看到微弱的光线到深紫色,但物体却能看见强烈的荧光。

这些灯的波长(约 360 nm)适合于控制钞票和显示有机液体的痕迹,但不适合控制橄榄油。


利用 LED 和紫外激光(波长约为 405 nm)获取橄榄油的叶绿素荧光。

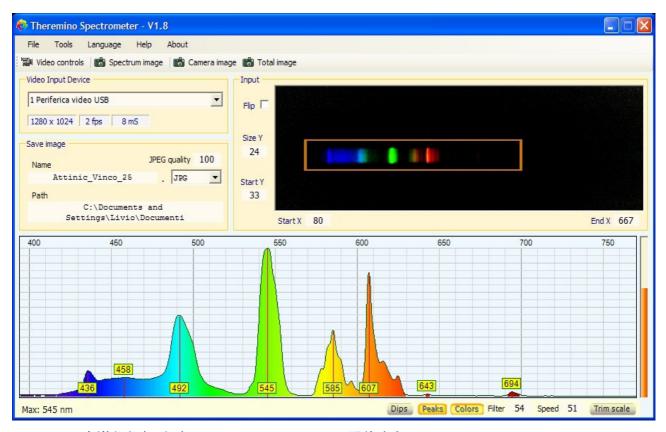
光化灯泡

这些灯用于吸引昆虫。它们类似于黑光灯(黑光),但没有暗滤光片,也发出大量可见光。光化 Sylvania 灯标有"BL350"或"BL368"(BL 后面的数字表示纳米峰值能量),飞利浦灯标有"05"。


深蓝色表示苍蝇眼睛的敏感度,浅蓝色表示"光化"灯产生的光。

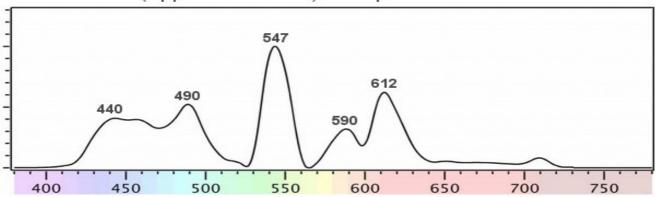
飞利浦 6W/05 光化灯的光谱。请注意,它与飞利浦公布的特性非常相似(右上角的小光谱)

晒黑灯


它们的光谱与光化灯非常相似,但发射峰值较低(约 350-360nm)。

飞利浦 15W CLEO 灯管的光谱。

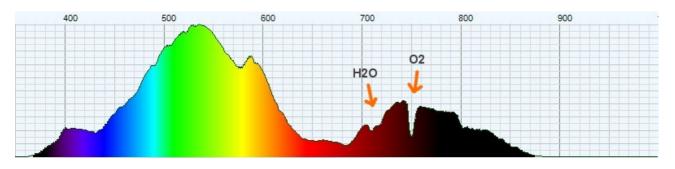
液晶显示器像素的颜色


在这里,我们看到了与商用光谱仪 (X-Rite i1 Pro2) 的有趣比较。图形非常相似,但 Theremino 光谱仪的分辨率更好。

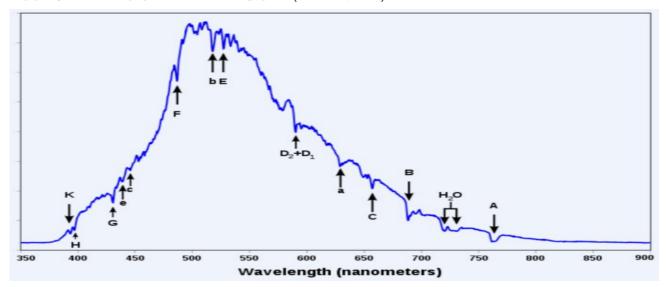
Theremino 光谱仪如何看到三星 SyncMaster 913 显示器的白色

要测量液晶显示器,必须将屏幕上的白色区域设置为白色,提高亮度和对比度,通过光谱仪移除滤光扩散器,并调整曝光以获得最大灵敏度。

Monitor LCD (Apple Cinema HD) with spectrometer X-Rite i1Pro2


售价超过 1,000 美元的光谱仪广告制作的类似图表

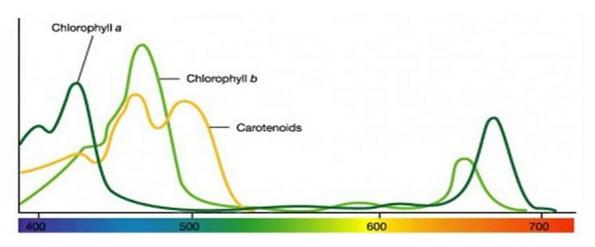
X-Rite 的高成本部分是由于它还提供了有关光"数量"的信息,而 Theremino 光谱仪无法做到这一点(网络摄像头的线性度不够,无法测量接收到的光量)。


theremino System - Theremino Spectrometer Spectrums - December 24, 2024 - Page 13

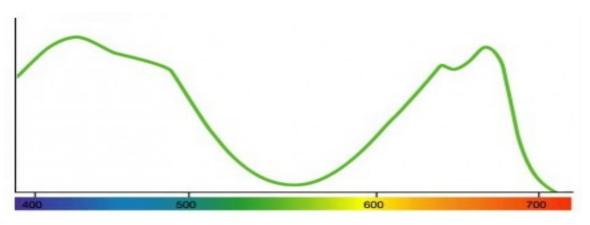
太阳光光谱

该光谱的外观会根据一天中的时间、测量的天空面积和海拔高度而变化。大气强烈吸收某些波长, 紫外线、可见光和红外光之间的比例可能会有很大差异。

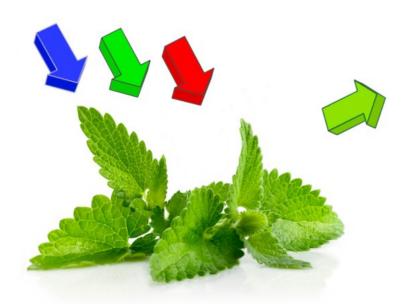
下图显示了大气中存在的物质产生的吸收线(夫琅禾费线)。



指定	元素	波长 (纳光)
是	哦_2	898,765
是	哦 2	822,696
一个	哦 2	759,370
Z	哦 2	686,719
碳	<u>赫</u> α	656,281
到	哦 2	627,661
德 ₁	蚰	589,592
德 ₂	钠	588,995
德 ₃ 或 d	他	587.5618
和	<u>汞</u>	546,073
埃 2	<u>铁</u>	527,039
b_1	镁	518,362
b ₂	镁	517,270
b ₃	铁	516,891
b ₄	镁	516,733


指定	元素	波长(<u>纳米</u>)
С	铁	495,761
F	氢键	486,134
d	铁	466,814
和	铁	438,355
負責	氢键	434,047
格	铁	430,790
格	哲	430,774
时长	氢δ	410,175
赫	钙+	396,847
钾	钙+	393,368
大号	铁	382,044
否	铁	358,121
磷	<u>你</u> †	336,112
电视	铁	302,108
吨	镍	299,444

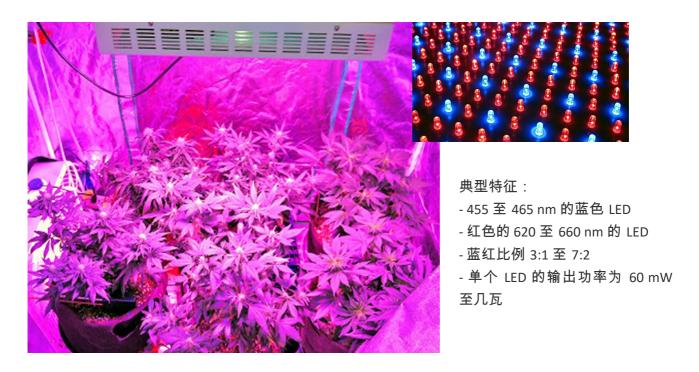
植被吸收的波长


植被优先吸收可用于产生能量的波长(通过叶绿素的光合作用)。

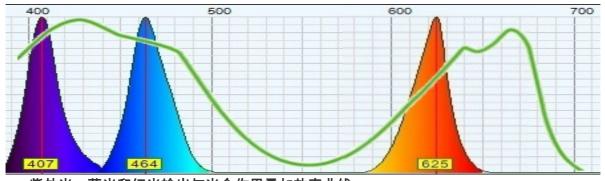
波长更容易被植被吸收

为光合作用提供更多能量的波长

植物从红光和蓝光中获取能量,但反射 绿光。


浅绿色和绿黄色的成分,叶子会不必要 地发热,而不会提供大量的能量。

这就是植物呈绿色的原因。


theremino System - Theremino Spectrometer Spectrums - December 24, 2024 - Page 15

植物生长灯

为了高效种植植物,不浪费绿色区域的能源,我们使用蓝色和红色 LED。

植物生长灯

LED 紫外光、蓝光和红光输出与光合作用叠加效率曲线

从该光谱中我们注意到,通常的紫外线和蓝色 LED 具有良好的光合作用效率(超过 80%),但普通的红色 LED (625 nm)的效率仅为 50%。对于栽培最好使用波长较长的红色 LED (约 660 纳米)。

由于红光 LED 效率较低,以及对植物化学性质的其他考虑,导致灯具中每有 3 个红光 LED 对应有 1 个蓝光 LED。红光会影响开花和产量,蓝光会影响茎节之间的距离和生长速度。